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Abstract

A triboelastic approach is offered for modeling the reinforcement phenomenon in particulate elastomeric composites.
The structural unit is composed of two solid substrates, modeling the surface of filler particles, and an adjoining
nonlinear elastic spring, modeling a rubber molecule adsorbed by the surfaces of substrates. The strength of the
adhesive bond is represented as a specified frictional resistance appearing when the string is sliding along the substrate.
The tensile curve of this model gives a clearer insight into the reinforcement mechanism, which may by regarded as the
frictional resistance experienced by the spring on its sliding along the substrates at lower and moderate deformations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the solid tiny particles of a micron size or less incorporated into rubber matrices
increase considerably the modulus and tensile strength of such particulate composites while retaining and
sometimes even enhancing their high breaking deformations.

The mechanism of this effect discovered about 90 years ago and widely used in industry remains unclear
until now. In spite of huge experience gained by chemists, physicists and mechanicians in a search for its
foundation, it remains at a level of qualitative explanations not substantiated by an appropriate quanti-
tative modeling (Alexandrov and Lazurkin, 1944; Mullins, 1987; Song, 1987, Medalia, 1987; Edwards,
1990).

This paper represents an attempt to develop a mathematical model based on the concepts evolved by
Alexandrov and Lazurkin (1944), Dannenberg (1966), Rigbi (1980), Soos (1984), Medalia (1987) and
Edwards (1990), who suggested that it is the surface mobility and dragged slippage of elastomeric molecules
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adsorbed on the surface of submicron filler particles that play the leading part in the reinforcement
phenomenon.

2. Experimental evidence of the reinforcement effect with attendant whys and wherefores

The quantitative evaluation of reinforcement is usually represented as the ratio of the strength of a filler-
reinforced elastomer to that of a gum vulcanizate, other factors being the same, or as the ratio of the
modulus of the filler-reinforced elastomer to that of the gum vulcanizate at some specified elongation
(usually about 300%).

The experience gained is presented in a number of thorough reviews (Mullins, 1969; Kraus, 1978;
Boonstra, 1979; Rigbi, 1980; Voet, 1980; Medalia, 1987; Edwards, 1990). They allow us to summarize
conditions, which cause the reinforcement effect and may be regarded as the experimental evidence for
the creation of an appropriate mathematical simulation.

The augmentation of the area of contact between the rubber binder and the filler particles appears to be
of key factor importance in providing the pronounced reinforcement effect. The value of the interface
contact area is determined both by the size of filler particles and their volume fraction (Mullins, 1969;
Kraus, 1978; Boonstra, 1979; Edwards, 1990; Yuan and Mark, 1999) with the chemical nature of particles
being of minor importance (Voet, 1980; Edwards, 1990). The size of filler particles is of primary concern.
Since the interface contact area increases as the reciprocal of the particle diameter, the use of micron and
submicron-sized filler furnishes the largest interface areas with ultimate reinforcement effects (Boonstra,
1979; Kraus, 1978; Medalia, 1987). In addition, the interface area grows with the filler volume fraction. The
reinforcement caused by this factor reaches maximum at about 0.2-0.3 filler volume fraction (Kraus, 1978;
Boonstra, 1979; Edwards, 1990).

The reinforcement is most pronounced in elastomers based on flexible hydrocarbon molecules capable of
large elongation ratios upto 15 with a sharp upward nonlinear increase in stiffness before the breakdown
due to the limited chain extensibility (Edwards, 1990; Yuan et al., 1996; Bokobza, 2001).

Next important aspect of elastomer reinforcement is a degree of bonding between the filler particles and
the rubber chains on the interface. Generally, this magnitude varies widely from a very weak physical
interaction, as in the case of the graphitized carbon black (Kraus, 1978), to nearly complete chemical
immobilizing of the rubber at the filler surface. Experience demonstrates a profound effect of the filler-
rubber interaction on the reinforcement effect. Excessive chemical bonds promote the reduction of both
breaking stresses and strains (Edwards and Fischer, 1973). Weak covalent bonds prevent obtaining the
desirable modulus magnitudes.

A number of scientists, who examined the reinforcement phenomenon (Alexandrov and Lazurkin, 1944;
Dannenberg, 1966; Rigbi, 1980; Soos, 1984; Medalia, 1987; Edwards, 1990; Kilian et al., 1994; Leblanc,
1995; Kaliske and Rothert, 1998), attributed it to the surface mobility and dragged slippage of adsorbed
segments of elastomer chains over the surface of filler particles, assuming that this process prevented
molecules from premature breaking and thus increased the resistance of material to extension. They
believed that the dragged slippage played a decisive role in the phenomenon under consideration.

These concepts have been well supported by experience. It is known that hysteretic losses in cycling filled
rubbers are essentially high and their magnitude grows with sample elongation. Grosch et al. (1966) have
established an unexpected general regularity lying in the fact that the more the energy accumulated in the
break-down extensions, the more the attendant hysteretic loss. If one regards this loss as a manifestation of
the microdamage accumulation, then it remains unclear why the failure energy should increase with the
growth of the accumulated damage. However, if the hysteretic loss is looked upon only as a result of a
dragged slippage of adsorbed rubber molecules over the surface of filler particles, then the hysteretic effect
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can be conceived of as a measure of the internal structural rearrangement that has nothing to do with
damage emergence and accumulation.

Tensile cycling of filled rubbers at constant amplitudes commonly leads the tested samples to some
steady degree of softening with negligible residual hysteretic losses (Soos, 1984; Kovrov and Moshev, 1984;
Eisele and Miiller, 1990). The tested sample behaves as if it again approaches the elastic state, which is very
distinct from the initial one (the convex shape of tensile primary curves transforms into the concave one).
At first glance, it seems that cycling at constant amplitude provokes an establishment of some constant
degree of damage responding to the imposed strain amplitude. Increasing amplitude enhances softening
with subsequent stabilization of a new elastic behavior.

Subsequent experiments, however, disclosed that this interpretation is untrue. Soos (1984) experimen-
tally found that the hysteretic losses, he observed in cycling tests of the carbon black filled rubber, can in no
way be regarded as an evidence of irreversible damaging of tested material. After heating the cycled
specimens at 120 °C for several hours, he restored the initial properties of the tested samples. Restoring the
initial mechanical behavior of specimens implied that the basic properties of their constitutive elements
(rubber and filler) were not changed by cycling. Then some questions arise as to why cycling provokes
specimen softening; why this softening becomes stable after several cycles; why heating restores the initial
properties of specimens.

The hypothesis for the interface dragged slippage during deformation of particulate composites seems to
be well suited for answering these questions. Slippage, provoked by specimen extension and realized
through overcoming adhesive bonding, changes the internal structure of the composite system. Newly
formed adhesive linkages preserve this state, since the weak enthropic retractive elasticity is unable to revert
the system to its initial state. Heating slackens the adhesive bonds and enhances the enthropic retractive
force, which leads to restoring the original state of the specimen.

Since adhesive bonds resist rubber slipping both under extension and retraction, the cycling of specimens
provides hysteretic loops. Clearly, they have nothing to do with damage accumulation, because these
hysteretic losses characterize only the degree of reversible structural rearrangement taking place at the filler-
rubber interface. Hence, a higher hysteretic loss means simply higher degree of the internal structural re-
arrangement. From this point of view, the experimental results obtained by Grosch et al. (1966) might be
interpreted as follows: the more the filled rubber is capable of reversible structural rearrangement during
deformation, the higher the work done at break. Remembering that the slippage of rubber molecules over
the surface of the filler particle is the cause of structural rearrangements, we may conclude that it is directly
related to the strength of rubbery particulate composites.

The main topic of our study has been directed to a creation of a primary structural model capable to
explain in a quantitative manner the reinforcement effect observed in experiments, what, to our knowledge,
has not yet been done. Since the bulk of available experimental data on the reinforcement phenomenon has
been obtained in simple tension, this kind of extensive experimentation was chosen first as the base to start
with.

3. Modeling the reinforcement mechanism in terms of triboelastic approach

At present, a quantitative micromechanical description of the rubber-filler interaction based on the
rigorous molecular dynamics examination seems to be unlikely due to the complexities in the representation
of the irregular shape of filler particles, arrangement of the adsorbed macromolecules over the contact
surface and their movements under the action of the applied external forces. With this in mind, we have
made an attempt to create a rougher approach still retaining dominant factors responsible for the rein-
forcement effect, i.e., the mechanical properties of rubber molecules with their limited chain extensibility
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and the ability of adsorbed molecules for dragged sliding along the interface under the applied pulling
action.

3.1. Simulation of rubber molecules mechanical behavior

Many authors (Zhang and Mark, 1982; Boue and Vilgis, 1986; Mohsin and Treloar, 1987; Diamant et al.,
1988; Yuan et al., 1996) claim that the capacity of rubber molecules to increase essentially the elastic
stiffness in extension before breaking plays an important role in the reinforcement phenomenon. In this
connection, it seemed appropriate to simulate, as close as possible, the resistance of macromolecular chains
to extension by that of the nonlinear elastic springs. According to Treloar (1958), the elongation, /4, of
flexible rubber molecules under extension can be expressed as

/h“:’ﬂ“m(Cthf_l/f)a (1)
where f is some dimensionless measure of the tensile force, 4, is an ultimate elongation ratio of the

molecule, which depends on the contour length L, of the molecule expressed as a number, N, of freely joint
segmental units composing the given molecule.

Jm = VN. (2)

With this in mind, for selecting the properties of modeling elastic springs, we have adopted the expression
rather close to that emerging from the molecular concepts
i = Im(Cthf = 1/£) + 1.0, 3)

where / is the elongation ratio of the spring under the tensile force f with /,, being the breaking value of A.
This expression reflects the basic feature of the molecular behavior: a constant initial modulus with the
consequent steep nonlinear upturn until breakdown.

Again, as in case (2) for freely joint molecular segments, it has been adopted that breaking elongation
ratio 4, for the modeling spring depends on its length L, as follows

Jm = \/Lo. (4)

Here, as in Eq. (2), the length L, as well as other length measures, should be regarded as expressed through
a dimensionless number of some segmental units composing its length.
Combining (3) and (4) yields

4= /Ly(Cthf — 1/f) + 1.0, (5)
where L, is the segmental length of the spring, and f is the tensile force in dimensionless form. This ex-
pression is taken for modeling the tensile behavior of rubbery molecules with the nonlinear elastic springs.

Returning to the basic expression (1), let us establish the breaking elongation for modeling springs.
Obviously, an infinite force required by (1) for perfect stretching of rubber molecules is highly improbable.
Apparently, rubber molecules should break at lesser stretches. As far as we know, reliable data concerning
breaking elongations of single rubber molecules are missing. However, the approximate theoretical cal-
culations made by He (1986) allow one to make rough estimates of actual breaking elongations, Ay, of
rubber chains. If the thermal fluctuations and scatter in individual chain loadings are accounted for, the
carbon-carbon bonds most likely break down at elongation close to 0.95 of the A, value. Then the breaking
force of the molecule, f,, related to this condition, immediately follows from (1). It should be taken equal to
20.0. This criterion has been adopted as the breaking force for springs modeling the behavior of molecules.

We shall define the deformation of the spring, &, as

&= AL/Ly, (6)

where AL is the increase in the length of the spring under the action of the force f.
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Hence

AL = Lo\/Lo(Cthf = 1/f). (7

As follows from (5), the tensile behavior of elastic springs, modeling rubber molecules, is of a rather
specific kind. By contrast to usual elastic springs, their stiffness becomes a function of their length, their
initial modulus is a constant equal to 3, and their breaking stress is also a constant equal to 20. Fig. 1
demonstrates tensile curves for various lengths of modeling springs. The initial nearly linear increase of the
force gives way to strongly pronounced nonlinearity of tensile curves with steep upturns ending in identical
breaking forces. A marked dependence of breaking deformations on the length of springs is a key feature of
the rubber molecule behavior simulation.

3.2. Filler-rubber adsorption bond modeling

To our knowledge, there are no data on this point that are workable in simulation adsorption bond.
Nonetheless, a close similitude of adhesive failure under shear and interface sliding friction can be easily
traced. That is the reason why, in the scheme outlined below, the failure of the adsorption bond is simulated
by some specific friction force. This approach takes the bond energy as some constant specific property.
Hence, it postulates the sliding friction per unit interface length, T, to be some constant magnitude. Similar
assumptions on adsorption phenomenon are encountered in papers of some physicists (Heinrich and Vilgis,
1995). No sliding occurs at interface shear stresses that are less than 7. Hence, the force, f, needed to
provide sliding along the length of the solid substrate, u, is easily obtained as

f =Tu. (8)
In order to avoid using dimensional magnitudes, it is adopted that force unit for 7 is the same di-

mensionless magnitude as that for f in expression (5).

3.3. The primary triboelastic structural element

The above constitutive elements enable assembling a unitary construction of a primary triboelastic
structural element, designed for modeling the reinforcement phenomenon. Its geometry, shown in Fig. 2, is
composed in such a way as to elucidate the triboelastic nature of the reinforcement in a most distinct
manner.
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Fig. 1. Tensile curves for various lengths of modeling strings. Number near the curves indicate segmental lengths of the springs.
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Fig. 2. Primary triboelastic structural element.

A spring of length L, is located along two substrates of equal length (Z,/2), representing neighboring
filler particles. The left and right ends of the spring are clamped to the left and right external ends
of substrates. Both substrates are supposed to have identical interface friction, 7. Initially, the system is
assumed to be free of internal stresses.

The tensile force F is applied to the model for demonstrating and analyzing the reinforcement phe-
nomenon. The bridge AL of a stressed spring appears once the extension has started (Fig. 2). It is formed by
the portions of the extending spring, which have slipped from the substrates into a widening gap between
them. Clearly, the bridge between the substrates experiences the same tensile force f as that applied to the
model.

The extension passes through two stages. At the outset, the rising resistance of the model stems only
from the interface friction between the spring and the substrates due to the increasing sliding length u. The
stress in the spring originates at points A and grows linearly (according to (8)) till points B, where it reaches
the maximum value u7 transmitted to the frictionless bridging zone AL of the spring. Portions of the spring
lying outside points A remain free of stresses. The state, where the response of the model to extension is
controlled solely by the interface friction, goes on until the interface sliding reaches points C having covered
completely the substrate lengths u,, = Ly /2.

Then the proper elastic stiffness of the spring also becomes engaged into the elastic resistance, in parallel
with the frictional one. This system breaks down in its most stressed locality, i.e., somewhere in the gap
between the substrates, when the tensile force applied to the model reaches the maximum postulated value
20.0.

The calculation of the tensile curve for the model in Fig. 2 is carried out as follows. For the sake of
convenience, the force of extension, F, is introduced as a leading parameter. Considering the symmetry of
the model in Fig. 2, for simplicity, a half-sized part of the model will be further mathematically treated.

According to (8), applying F immediately actuates the sliding of the spring along the portion u of the
substrate

u=F|T, 9)

adjoining the gap between the substrates. So, the initial (reduced) length of the spring, L, involved in sliding
equalizes u.

Under the action of the force, F, the initial length of the spring L increases and partly goes out of the
frictional contact with the substrate, forming the bridge between substrates. The reduced length L now may
be regarded as a sum of a certain length S, retained by friction on the substrate along the section «, and a
length R gone out from the friction zone,

L=S+R. (10)
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Taking into account that the force in the spring varies along the frictional contact u increasing linearly from
zero at points A to F at points B, the value of S can be found by the appropriate integration procedure.
Each element du on the substrate is in one-to-one correspondence with the spring element dS, stretched
along du by the local effort £, i.e.

ds = du/7, (11)

where / is the elongation ratio at the point under consideration. A depends both on the current value /" and
the reduced length of the spring involved in movement, which is equal to 2L according to the adopted
scheme of the model shown in Fig. 2. Hence

dS:du/(\/z_L(Cthf— 1/1) + 1.0). (12)

Summing dS over u one determines the frictionally restrained length of the spring S corresponding to the
zone u for one substrate

F
s- | (d7/1) | (13)
o V2L(Cthf —1/f)+1.0
Now the frictionless length of the spring, R, slipped off from each substrate is found as
R=L-S. (14)

Thus, the reduced length of the spring joining substrates within the gap should be taken equal to 2R.
According to (7), the stretch of the bridged portion of the spring AL is equal to

AL = (2R)(\/2_L(CthF— 1/F) + 1). (15)

The deformation of the model, ¢, is defined as
e=AL/(2L). (16)

Following the above scheme, the extension comes to an end when u reaches points C (Fig. 2). It is seen that
the second stage of deformation starts, when the reduced length of the spring remains constant, equal to Lo
with the ‘frictional’ resistance stabilized at level F{ = T(Lo/2). Now the sought-for value of § is calculated
as

e (df/7)
n  VL(Cthf —1/f)+1.0°

Here, the upper limit represents the tensile force applied to the model.
Subsequent treatment is similar to the above examined with

S =

R=1Ly/2—5,

AL = (ZR)(\/fO(Cth(F+R)—1/(F+F1))+1>. (a7

The cell breaks down when the tensile force applied to the model (F 4 F}) reaches the adopted breaking
value 20.0.

A like computational scheme is used in solving tasks with other loading schedules. It consists in imposing
the force, F, and calculating the reduced length of the moving part of the spring L, the reduced dragged
length, S, the reduced free length, R, and, finally the increase in the length of the model, AL. For more
details, see Appendix A, where an example of hysteresis cycles calculation is presented.
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Fig. 3. Tensile curves of the structural elements at various interface friction.

3.4. Basic features of the primary triboelastic structural element

Fig. 3 demonstrates a set of tensile curves obtained for Ly = 100 (Fig. 2) in a wide range of friction
values, 7, indicated at the curves. The lower concave down curve represents the behavior of the non-
dragged freely moving spring characterized by a very low initial modulus upto about 400%. Such a shape
makes a sharp contrast to other convex upward curves caused by the triboelastic manifestation. This
distinction is of fundamental importance.

It becomes evident that the appearance of the friction between the spring and the substrate causes a
considerable increase in the resistance of the model just in the range of deformations (upto 5), where a
proper resistance of the string is remains still low.

It develops that a several time reinforcement is reached even at moderate friction values of the order of
0.2-0.4. For instance, at strains about 300%, the reinforcement factor about 9 for the specific friction equal
to 0.3 is gained.

Next point worthy of attention is that, within the range of moderate friction forces, upto 0.4, the
breaking strains remain identical with those of the free string. At higher specific frictions a steep drop of
breaking strains takes place. The role of friction provoking a raise of the resistance at the initial stages of
extension dies out as the force approaches the breaking value of 20.0.

The specific combination of the upturn nonlinear elasticity of the string, modeling the behavior of rubber
molecules and the convex frictional resistivity, is, perhaps, the main cause of rubber reinforcement.
Qualitatively, these results are consistent with the experimental observations that just moderate filler-
rubber couplings are favorable for getting resilient rubbers with reasonably high reinforcement (Edwards
and Fischer, 1973; Rivin and True, 1973).

4. Evaluation of the predictive capabilities of the triboelastic modeling and discussion

The frictional sliding of the elastic spring along the substrates in the framework of the model in Fig. 2
might, obviously, provokes the hysteresis manifestation in cycling tests. The hysteresis stems from the
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Fig. 4. Tension-retraction cycles with the increasing amplitudes indicated near the loops for 7 = 0.3.

inability of the extended string elements, positioned along the filler-rubber interface during extension stage,
to return completely to their initial localizations during retraction, since the elastic retractive force of the
spring meets the opposing frictional resistance.

Fig. 4 demonstrates the calculated tension-retraction cycles with the increasing amplitudes for the basic
model in Fig. 2. Experimental cycles are depicted in the insert (Kovrov and Moshev, 1984). Both the
measurement and computation agree on the main feature of such testing, i.e., the one-time tensile curve
restoring contrary to softening induced by intermediate cyclings. The deviation between them, wherein
cycles are coupled, comes from the deficiency of the model that neglects extenuating action of relaxation
phenomenon. In no way it can influence restoring mechanism.

It is obvious that the hysteresis under investigation can not be considered as a kind of structural
damaging, since the system can be reverted to the initial state by eliminating the interface friction. In
practice, this can be realized by heating the cycled specimens, as was demonstrated by Soos (1984).
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Fig. 5. Typical shape of hysteresis loop in a just before rupture state.
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The scheme of the model adopted allows one to calculate the work done at break, 1, and the hysteretic
loss, Hy, corresponding to this state. One typical shape of such hysteretic loop is shown in Fig. 5. Now we
can compare the theoretical W, vs. H, correlation so obtained with the well known experimental data es-
tablished by Grosch et al. (1966). Fig. 6 presents log W, vs. H, relation computed for a set of input data
with specific friction varying between 0.1 and 1.0 and the lengths of the initial gap between the substrates
varying from zero to 0.8 of the length of the spring taken to be 100. The points fall closely to a single curve
that after statistical treatment provides the equation

W, = 37.8H%.

Qualitatively, this equation, agrees well with the experimental relationship established by Grosch et al.
(1966)

Wy = 4.1H.

This suggests that the triboelastic participation explains, to some extent, the nature of the experimentally
established relationship between W, and H,, that until now has remained, as far as we know, rather unclear.

Seemingly, the examined triboelastic model must be viewed only as a primary structural element of
rubbers filled with submicron-sized particles. It reflects some features of these materials. However, it can
not predict other important macroscopic properties (such as the strength and ultimate elongation of
composites) that are beyond the explanatory capabilities of a single structural unit. The macroscopic
properties are formed on higher dimensional levels characterized by a considerable structural nonhomo-
geneity. Thus, the subsequent development of multilevel modeling seems to be imperative.

Another point worthy of attention is the contribution of dangling chains and available free chains to the
reinforcement effect. Obviously, these ones, adsorbed on the neighboring particles, should be engaged in the
elastic resistance so long as the spacing between the particles remains less than the proper length of such
chains. The approach examined in this paper seems to be well suited for quantitative evaluation of the role
of these so-called “defective” network elements in the reinforcement of particulate composites.

Considering the reinforcement phenomenon as a whole, it is commonly believed that the reinforcement is
a way of rubber network strengthening. However, on the basis of this postulate, it is very difficult to explain
the experiments (Kraus, 1978), where the breaking strain of filled rubbers, along with the considerable
increase in strength, turns out to be three—four times greater than that of the unfilled rubber network. It
may be safely suggested that the role of the rubber network structure in determining ultimate characteristics
of filled rubbers is unessential. Perhaps, it is the interface slip, facilitating deep rearrangements of filler
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particles at high extensions that plays a dominant role in enhancing the ultimate deformations. This
condition does not require the mandatory existence of the precursor rubber network structure, which was
impressively demonstrated by Leblanc (1995) in his experiments with the filled non-crosslinked rubbers.
A triboelastic model considered is able to explain the relation between the chain dimensions and the size
of the filler particles only on a qualitative level. Decreasing the size of filler particles, solid volume and chain
dimension being kept constant, diminishes not only the space between the particles but also increases
considerably the number of such shorten molecular bridges set in resistance. Remembering that stiffness of
the interparticle chains increases with their shortening and the number of the counteracting units increases
too one would expect significant increase in the initial modulus of the system. The quantitative estimation
of the role of particle size in reinforcement demands constructing a more complicated structural model than
the simplest one considered in this manuscript. We intend to investigate numerically such updated model in
our next paper dedicated to the evaluation of general predictive potentialities of the triboelastic approach.

5. Conclusions

The results of this work show that the offered triboelastic model is capable of quantitative predicting the
reinforcement of rubber by solid particles. The model is based on the hypothesis suggested earlier by a
number of researchers, who postulated that, under the action of applied force, macromolecules adsorbed on
the surface of filler particles come into the dragged sliding without breaking for some time and so promote
the effect in question.

The structure of the model includes a nonlinear elastic spring simulating the properties of macro-
molecules, a substrate simulating the surface of filler, and the force of adhesion being represented by some
effective friction resistance.

This model reflects the reinforced resistance as a result of combined action of two aforementioned
mechanisms. A most distinctive feature of such a interaction is the fact that even the moderate interface
friction effectively compensates a very weak initial elastic resistance of macromolecules and thus leads to a
several times increase in the reinforcement of the system in the range of strains 100-400%.

Conceptually, the model consisting of one string and two substrates may be regarded as a primary
structural element. Numerical experiments simulating the cycling the growing amplitudes and the calcu-
lated relation between the work at breaking and hysteresis loss are in good agreement with experimental
data.

The next step in this direction seems to be a creation of mesoelements as random assembles of primary
structural elements with higher predictive potentiality.
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Appendix A. Scheme of calculating hysteresis cycles for up and down extension loading with increasing
amplitudes

At any instant, according to Eq. (15), the increase in length AL of the model, shown in Fig. 2, under the
load F is a stretch of the bridged portion R of the string L that is set in motion. Hence, in hysteresis cycling,



4560 V.V. Moshev, S.E. Evlampieva | International Journal of Solids and Structures 40 (2003 ) 45494562

F=0 Initial state
F
1 L=2u (a)
Intermidiate loading state

< U—><AL—=><U—>

B
(b)
A A Load amplitude state
u; <— ALy —u;
f R
F
P o le)
E B A A B £ Intermidiate unloading state
g
FrFi2 FrFi2
F=0 (d)
c 8 A B c Complete unloading
ShLe
FrFi2 E RrFi2 (e)
T Second extension:
R=F/2 F=F/2 intermediate state
E H DA A D H E
F-dF
1 (f)
Second extension:
o the load is close to F,
F+AF

g
Continued extension:
the load is somewhat
greater than F,

Fig. 7. Loading states in cycling.

the computation of AL against the imposed F variations is reduced to the establishment of L- and R-values
for any specified situation.

Let the specific friction be equal to 7' and the load amplitude of the first cycle be equal to Fj. Increasing
load F applied to the model, actuates sliding the spring along the portion u = F/T on each substrate ac-
cording to Eq. (9) (Fig. 7a). So the whole actuated length of the spring L is equal to 2u. Portions of this
length S retained by friction and R in friction-free state on each substrate are calculated by Egs. (13) and
(14) respectively. Finally Eq. (15) gives the increase in length AL of the model as a function of F (Fig. 7a).

Let F; denote the magnitudes specifying the load amplitude F, (Fig. 7b). After reaching F; (Fig. 7b),
unloading takes place with F diminishing to zero as shown in Fig. 7c and d. This process is controlled by
the same friction gradient 7 but acting in the direction opposite to a previous one. Now the maximum load
Fax in the model is transposed from the gap between the substrates to the friction zones. It travels from the
point A (Fig. 7b) to point B (Fig. 7c) pulling part of the spring on the substrates from the gap. The dis-
placement of Fy,,, position into the zone of friction increases the length of the spring involved into frictional
contact. It is obvious that at complete unloading (F = 0), when F},,, decreases to F;/2 (Fig. 7d), a part of
the spring AC retained by friction, remains in the stressed state. This causes the appearance of a gap be-
tween the substrates representing a residual deformation, AL,.

At the very start of unloading, the length of the spring L, is simply equal to R;, other parts of the spring
being intact. However the displacement of Fj,,, inward the substrates increases the length of the actuated
spring. Since outside Fy,,x positions (points B in Fig. 7c¢) the stressed state of the spring remains intact,
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which enables one to calculate first the intact length S, by Eq. (13) with F = F,,x and L = L; and then the
sought-for actuated length L, = L; — 2S,. A portion of L,, being in frictional contact between the points A
and B in Fig. 7c is calculated as

Fax df/T

=), ULt -1+t

Now the bridged length of the spring R, can be calculated, as R, = L, — S,, and then its decrease in
length AL, under load F is calculated through Eq. (15).

It is significant that only a portion L, of the originally extended spring L, participates in the retraction
process. Since L, is less than L; the first is stiffer than the second and causes a steeper unloading curve. The
value of R, at the end of unloading represents residual deformation.

The second cycle begins with the extension of the system from the state that has resulted after the first
cycle (Fig 7d), i.e., with F = 0, L; = Ry, and R; = R,. Increasing load sets in motion portions of the spring
on the substrates with the load distribution as shown in Fig. 7e for an intermediate state. This process goes
on until the load approaches closely the first amplitude value F; (Fig. 7f). During this stage of extension, the
growing load enlarges the actuated length of the spring L; through formation and increase of frictional zone
AD as shown in Fig. 7e. Current value of L; is calculated by subtracting the intact length of the spring S; on
the segments DE shown in Fig. 7e the initial total length of the spring equal to 2u,. The intact length S; in
turn consists of two terms: the first is lying between the points E and F and the second between the points F
and D

Fi/2 df/T N fir2 df/T
o VLI(Cthf —1/f)+1 " Jepp VL(Cthf —1/f) +1

S3 =

So L;-value is determined as
L3 = 2141 - S3.

Now the frictional length S, of L; can be determined along the segments AD as

g - F df/T
YT Jen VIS(Cthf = 1/f) + 1

and frictionless length R; as
Ry =L; — S4.

Hence the increase in length is calculated according Eq. (15).

It is important to keep in mind that, since the length of the extending spring L; in the second cycle is
shorter than that in the first one its elongation at the instant, when the growing load reaches F; value,
becomes somewhat lower than during the first extension.

However, as soon as the current tensile load F exceeds the previous maximum Fj, the whole length of the
spring immediately sets in motion according to the Eq. (8) as is shown in Fig. 7f and g. That provokes the
stepwise increase in elongation reducing the model to the state characteristic for the one-time extension to
the same load F. When the next force amplitude F, is reached, the cycle follows the basic pattern of the first
cycle. This scheme offers an explanation of restoring the one-time tensile curves during cycling tests with
growing load amplitudes.
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